
Effective API Navigation and Reuse

Awny Alnusair, Tian Zhao
Department of Computer Science

University of Wisconsin-Milwaukee, USA
{alnusair, tzhao}@uwm.edu

Eric Bodden
Department of Computer Science

Technische Universität Darmstadt, Germany
bodden@acm.org

Abstract

Most reuse libraries come with few source-code exam-
ples that demonstrate how the library at hand should be
used. We have developed a source-code recommendation
approach for constructing and delivering relevant code
snippets that programmers can use to complete a certain
programming task. Our approach is semantic-based; re-
lying on an explicit ontological representation of source-
code. We argue that such representation opens new doors
for an improved recommendation mechanism that ensures
relevancy and accuracy. Current recommendation systems
require an existing repository of relevant code samples.
However, for many libraries, such a repository does not ex-
ist. Therefore, we instead utilize points-to analysis to infer
precise type information of library components. We have
backed our approach with a tool that has been tested on
multiple libraries. The obtained results are promising and
demonstrate the effectiveness of our approach.

Keywords: Code reuse, Ontology, Points-to analysis

1. Introduction

Programmers often reuse code in many ways. One com-
mon way is to access libraries of reusable components, or
to plug into application frameworks. Unfortunately, many
libraries and frameworks are not intuitive to use. While
some exceptional pieces of software may be documented
well, it is often the case that libraries lack informative API
documentation, and lack sufficient source-code examples
that would explain a particular library feature. When such
an example does exist, it can be very helpful: program-
mers can often simply copy the example into the current
project and then adapt it to the new context, thus enabling
a particular API programming task to be completed rather
quickly. In this paper, we present an approach for auto-
matic source-code recommendation. Our approach is based
on the idea that many programming tasks require program-
mers to compose a chain of method calls that convert a

given source object of some particular type to a target ob-
ject of some other type. Thus, the programmer needs to an-
swer object-instantiation queries of the form (Source object
⇒Destination object). In the special case where the Source
object is not specified, the object-instantiation problem is
reduced to either a simple constructor invocation or a static
method invocation. For illustration, consider a programmer
trying to reuse Jena1; an open-source Java framework for
building Semantic Web applications. At some point, the
programmer wishes to programmatically construct a frag-
ment of a model based on a template in a given semantic
query. She would start with a Query object obtained from
a String representation of the query and wishes to end
up with a Model object representing the newly constructed
model. This programming task can be seen as an object-
instantiation task of the form (Query ⇒Model ). The fol-
lowing code snippet outlines a sample solution for this task:

Query query =
QueryFactory.create(queryString);

QueryExecution qe =
QueryExecutionFactory.create(query);

Model m = qe.executeConstruct();

For a developer who is unfamiliar with Jena, accomplish-
ing this task may not be easy. In particular, identifying the
proper call chains and the various static method invocations
require the programmer to have a substantial knowledge of
the framework’s structure. Even worse, many frameworks
do not provide type-specific methods that may free develop-
ers from using downward type casts. This complicates the
process of composing code snippets, as casts must be in-
serted to make the snippets compile. Our proposal to auto-
matic code recommendation tackles these issues effectively
by ontologizing source-code knowledge.

An ontology is an explicit specification of a conceptu-
alization [4]. It provides means to formally describe con-
cepts, objects, properties and other entities in a domain of
discourse, and to describe the relationships that hold among

1http://jena.sourceforge.net/

http://jena.sourceforge.net/


these concepts. We thus use ontology formalisms to rep-
resent software assets by building a knowledge base that is
automatically populated with instances representing source-
code artifacts. Our approach uses this knowledge base to
identify and retrieve relevant code snippets.

Besides addressing knowledge representation issues, our
approach improves on the existing state-of-the-art in the fol-
lowing ways: a) Unlike other recommendation approaches,
we neither require a repository of sample code to mine for
snippets, nor do we require our tool to be backed by a
source-code search engine to obtain these samples. These
requirements have been identified as one of the major lim-
itations of current recommendation systems [10]; b) Since
the structure of an API usually contains too little informa-
tion to obtain useful code snippets that require special fea-
tures (e.g. determining the legality of a type cast), we use
inter-procedural points-to analysis to enrich our knowledge
base with information about the possible runtime behavior
of the API; c) We provide a context-sensitive approach that
analyzes the user’s code when constructing, ranking, and
delivering code-snippet candidates; and d) Similar to other
approaches, we traverse a graph representation of source-
code to find a path between the source and the destination
objects. However, since our graph is based on an ontology
model, it is enriched with additional data that guides the
search and helps us obtain more precise results.

2. Related work

Researchers have proposed many code recommendation
techniques; all of which tackle the problem from different
perspectives. Data Mining-based techniques try to reveal
usage patterns of program components from a corpus of
existing code examples. This is usually accomplished by
extracting association rules which incorporate taxonomies
of inheritance relationships [8], or by applying frequent-
sequence mining and clustering techniques [15] to extract
API methods that are frequently invoked in sequence. Such
data mining techniques often suffer from scalability and
rule-complexity issues. Traditional Information Retrieval
techniques, on the other hand, circumvent some of these
complexity issues. They allow users to formulate keyword
queries to retrieve source-code samples ranked based on
the match between the query and the obtained name-based
indices [11] or latent semantic-based indices [9]. Due to
the nature of the schemes and the keyword-based search
employed, traditional keyword-based recommendation sys-
tems are usually very imprecise.

Some other approaches do in fact recommend personal-
ized code snippets when queried. These approaches base
their recommendation on analyzing a large corpus of sam-
ple client code collected using Google Code Search (GCS)
(PARSEWeb [13]), or by searching in a pre-populated lo-

cal repository (Strathcona [5], Prospector [7], and XSnip-
pet [12]). Strathcona for example, is a recommendation tool
that uses heuristics to match the structure of the code under
development (structural context) to the structure of the code
in a source-code repository. PARSEWeb, Prospector, and
XSnippet, on the other hand, are more focused on answer-
ing specific object-instantiation queries.

Although these approaches take important steps in the
right direction, we believe that there are fundamental is-
sues related to the mechanisms used for data processing and
data representation. Firstly, with the exception of Prospec-
tor, other tools rely on a hard-to-find repository populated
with client code that expresses good usages of the frame-
work. Prospector, however, does analyze API signatures
for the most part, but still relies on a repository to han-
dle special features such as downcasts. For tools that
collect code samples from the web, the obtained samples
are usually incomplete fragments that cannot be analyzed
precisely. Secondly, traditional knowledge-representation
mechanisms and hard-coded heuristics affect the quality
of the retrieved results and in most cases are highly un-
optimized. None of these approaches uses a formal and ex-
plicit representation of either the user context or the source-
code structure. Whether the representation mechanism used
is a relational database (Strathcona) or traditional graph-
based representation (PARSEWeb, XSnippet and Prospec-
tor), we hypothesize that encoding the representation us-
ing ontology formalisms improves the search for relevant
code snippets. Ontologies can naturally combine knowl-
edge from multiple sources (contexts) and then allow for
computing entailments from this combined knowledge.

3. Ontology-based code recommendation

An ontology is an explicit data model for a particular
domain. It consists of machine-interpretable definitions of
classes that formally describe domain concepts, relation-
ships between classes and their structural properties; and
constraints expressed as axioms. Therefore, we use our
own Source Code Representation Ontology (SCRO) to for-
mally represent the conceptual source-code knowledge of
the user context as well as software libraries used in the
user’s project. SCRO provides a base model for under-
standing the relationships and dependencies among source-
code artifacts. It captures major concepts and features of
object-oriented programs including encapsulation, inheri-
tance, method overloading, method overriding, and method
signature information. SCRO’s knowledge is represented
using the OWL-DL2 ontology language. OWL is a web-
based language used for capturing relationship semantics
among domain concepts, OWL-DL is a subset of OWL

2http://www.w3.org/TR/owl-guide/

http://www.w3.org/TR/owl-guide/


based on Description Logic and has desirable properties for
reasoning systems.

SCRO defines various OWL classes and subclasses.
These classes map directly to code elements and col-
lectively represent the most important concepts found in
object-oriented programs. Furthermore, we define various
object properties, sub-properties, and ontological axioms
within SCRO to represent various relationships among on-
tological concepts. SCRO is precise, well documented, and
available online [1] so it can be reused by other semantic-
based applications that require source-code knowledge.

After having created the ontology structure, one next
needs to populate the knowledge base with ontological in-
stances (OWL individuals) that represent various concepts
in the ontology. In the context of source-code recommenda-
tion, we need to populate SCRO with instances from various
sources. As the main source of information, we consider the
framework(s) currently being reused. Furthermore, to rank
the retrieved snippets, we also take into account the user
context depicted by the current project under development.

To that end, we have built a knowledge generator for
Java. The generated semantic instances are serialized us-
ing the RDF3 language. RDF is suitable for describ-
ing resources and provides a data model for representing
machine-processable semantics of data. For each frame-
work parsed, our knowledge generator builds an RDF ontol-
ogy that conforms to SCROs descriptions of source-code.
This way, we provide a clean separation of the explicit
OWL vocabulary with its associated schema definitions rep-
resented in SCRO from the metadata encoded in RDF. For
an extended description of SCRO, the process of knowledge
population, and samples of our knowledge extractor sub-
system, we refer the reader to our ontologies website [1].

3.1. Recommendation procedure

Let us revisit the object-instantiation task we presented
in Section 1. In this task, the user would like to find a code
snippet that shows how to get a handle to the Model ob-
ject. In order to automatically compose such a code snippet,
we rely on the RDF-graph representation of the framework
being reused. Figure 1 shows a partial RDF-graph repre-
sentation of the desired code snippet. As described in the
previous section, we can obtain this representation by pars-
ing the Jena framework.

RDF is a flexible data-representation and graph-based
modeling language. Nodes in the RDF graph are instances
of OWL classes that are specified in the knowledge base.
Edges, however, are SCROs object properties. For example,
hasOutputType is a functional property that represents
the method’s return type. hasInputType represents the
type of a method’s formal parameter and the inverse of this

3http://www.w3.org/TR/rdf-primer

Figure 1. Answering: Query ⇒Model

property is isInputTypeOf. Inverse properties allow us
to traverse the RDF graph in both directions.

Given this directed RDF graph representation, we con-
struct a code snippet through a guided brute-force graph-
traversal search starting at the node that represents the
source type (Query), enumerating all possible path can-
didates to the given destination type (Model). However,
traversing and reasoning over large graphs can be an ex-
pensive operation. In order to avoid reasoning overhead,
we use the reasoner to obtain the inference closure of the
original model. We then save the result which includes the
computed entailments into a plain ontology model. This
new model will be used for further processing. This way,
we maintain the benefits of inference but avoid the added
costs implied by using the reasoner. Furthermore, since we
are only interested in object-instantiation queries, not ev-
ery path in the graph is of interest to us. Therefore, we
restrict the obtained plain model to only those RDF nodes
and edges that can ever be used in a path that represents a
code snippet from the given source object to the required
destination object. The obtained model will be used as the
basis for graph traversal, querying, and hence snippet con-
struction. We call this model the Snippet Model.

3.2. Handling Downcasts

At its current state, the Snippet Model has no sup-
port for handling narrowing reference conversions (down-
casts). We thus introduce the hasActualOutputType
OWL property from SCRO. This property represents
the actual runtime return type of methods. Therefore,
we enrich the RDF graph with an edge labeled with

http://www.w3.org/TR/rdf-primer


hasActualOutputType that leaves a given method and
enters every possible runtime return type of this method.
During snippet construction, hasActualOutputType
is treated as an expression casting the result of the method
down to its actual return type.

In order to obtain the precise return type of API meth-
ods, we rely on inter-procedural points-to and call graph
analysis. Points-to analysis [3] is a static program analy-
sis technique that analyzes a sample program in order to
obtain precise reference and call-target information. The
essence of using this technique in our approach is to ana-
lyze each API method in order to obtain a points-to set of
its possible runtime return types. Once obtained, this in-
formation is used to enrich the Snippet Model with paths,
along the hasActualOutputType property, between a
given method and its actual runtime type. This information
will be used to determine the legality of a type cast when
search is performed at a later stage. In order to perform this
pre-processing step, we use the Soot framework [14]; a pop-
ular program analysis and optimization framework for Java.
Soot is capable of performing inter-procedural data-flow
analysis on whole-program points-to graph mode. How-
ever, this precise analysis requires creating program entry
points. Although we are currently working on methods
that make points-to analysis viable on programs that have
no distinguished entry point, this is still an ongoing work.
Therefore, we currently write appropriate entry points man-
ually by providing a main class with a main method that
exercises the API in question.

3.3. Snippet ranking and selection

Since every obtained code snippet represents a path in
the graph, it is notable that answering a given query may
result in a large number of paths; each of which is a solu-
tion candidate. However, not all solutions are of the same
degree of relevancy to the user. It is also notable that no
recommendation mechanism can rely on the type system
to identify best candidate solutions. Therefore, heuristics
can be used to rank the results based on relevancy measures
to the task at hand. In our approach, we use the path size
heuristic as well as user context heuristics.

Shortest-Path-First (SPF) is a simple yet proven effec-
tive heuristic. It assigns top rank to the shortest path in the
graph. This heuristic is a variation of the code length heuris-
tic proposed by Prospector[7] and used by others. However,
in our case, a path size represents the number of RDF state-
ments that are necessary to compose the snippet. Therefore,
the size of the path in Figure 1 is five.

While SPF clusters and ranks paths based on their size,
context-based heuristic assigns higher ranks to paths that
better fit within the current user context. We thus analyze
the code that is currently being developed by the user, then

we create a context profile that include all visible types that
are either declared by the user or inherited in the user’s con-
text. We further analyze each retrieved path in terms of the
new types that this path will introduce into the current con-
text. For example, a particular method invocation may have
an argument that requires instantiating and thus introducing
a new type into the current context. Naturally, code snippets
that introduce more types should be assigned a lower rank
value. However, if the newly introduced type is found in the
context profile, it will not count against the enclosing path.
This is entirely based on a simple scoring procedure that ac-
counts for the number of newly introduced types and their
visibility in the context profile. These heuristics are simple,
easy to implement, and helped improve our results.

4. Implementation and evaluation

We have implemented RECOS, a prototype object-
instantiation and recommendation system. RECOS is cur-
rently combined with a tool we have developed for detecting
design pattern instances in object-oriented frameworks [2].
This combination is meant to promote multiple levels of
software understanding and knowledge reuse. It is evident,
based on empirical studies [6], that code examples are un-
doubtedly necessary for understanding framework usage,
however, examples alone may not be enough to achieve the
full potential of systematic software reuse. To be truly ef-
fective, developers need to learn the design knowledge im-
plemented in these reusable frameworks. Our current im-
plementation provides both advantages in one tool.

In order to use RECOS, one needs to provide the loca-
tion of the framework’s binaries. The knowledge extractor
subsystem automatically parses the jar files and generates
a RDF ontology representing the structural description of
the framework’s API. This ontology is classified by the rea-
soner to generate semantic entailments and ensure proper
conformance to SCRO’s vocabulary and constraints. Once
classified, the system automatically generates the Snippet
Model that is subsequently enriched with ontological in-
stances obtained via points-to analysis as described in Sec-
tions 3.1 and 3.2, respectively. The final ontology serves
as the basis for answering object-instantiation queries. The
recommender subsystem accepts a user query (using a very
simple input form for entering the source and destination
objects), performs graph traversal, selects and ranks appro-
priate paths, and generates a custom code snippet for each
path. This subsystem is independent from the knowledge
generator subsystem. A user need only to configure it with
the location of the snippet ontology, the directory of the
code currently being edited, and the number of code snip-
pets returned when a query is executed (default is 15).

In order to assess the benefits acquired by our approach,
we conducted multiple experiments. The fundamental guid-



ing hypotheses we test in these experiments are:

H 1 Ontology-based representation of source-code knowl-
edge improves search precision.

H 2 Inter-procedural points-to analysis techniques relieve
a recommendation system from relying on a repository pop-
ulated with sample client code.

H 3 Contextual information provides better ranking and fil-
tering of the recommended items.

4.1. Case study: framework usage

This experiment is designed to evaluate RECOS accu-
racy for answering object-instantiation tasks. We have se-
lected ten Jena programming tasks. These tasks vary in
their complexity; ranging from a simple constructor or static
method call to a complex sequence of expressions. Table 1
shows statistics about these tasks after being expressed as
object-instantiation queries.

Table 1. RECOS framework usage results
Task Source Destination Context Rank
T1 Statement RDFDataType - 1
T2 RDFList IntersectionClass - 1
T3 Resource ComplementClass - 3
T4 Null OntModel String 1
T5 ResultBinding RDFNode - 1
T6 Statement RDFList Property, OntClass 2
T7 IDBConnection ModelRDB - 1
T8 String Individual OntModel, String 0
T9 Query Model String, OntModel 3

T10 Resource OntModel Model 3

For each task, an environment has been setup such that
the desired code snippet is left incomplete. We then in-
structed RECOS to fill in the missing code. We remind
the reader that a desired solution to a given query may not
be completely ready for immediate insertion in user code.
In some cases, the user still need to issue another query to
instantiate one or more objects introduced by the solution
(e.g., an argument in a method call or an intermediate object
within the sequence). Consider task T3 for example, the re-
trieved code snippet requires an object of type OntModel
to be present for the code to compile. RECOS generates an
intermediate variable that suggests a need to instantiate this
object. Typically, these objects can be instantiated with a
query specifying only the destination object as seen in task
T4. Usually, generalized queries of this form produce many
hits. However, precise ontology-based representations of
API code combined with heuristics produce a good rank of
the desired result. This shows a clear support for hypothe-
ses H1 and H2. Hypothesis H2 is also supported in part

by tasks T5-T7. In task T5 for example, an intermediate
method that returns an object of type Object needed to be
converted to RDFNode. Points-to analysis inferred that this
cast is possible, thus, avoided long and undesired paths.

In some cases, it was extremely difficult to infer the
user’s intent. Consider task T8 for example, RECOS re-
turns many hits that do not complete the task in question.
This task in fact shed a light on one of the difficulties faced
by recommendation systems in general. Dealing with String
objects usually affects precision and requires more sophisti-
cated approaches to be handled properly. Furthermore, API
methods that are heavily overloaded have their own affects
on ranking. In task T9, RECOS ranked the desired solu-
tion third and generates many hits. As described in Sec-
tion 3.1, this snippet requires invoking a heavily overloaded
method that creates a QueryExecution to execute over
the ontology model. However, context heuristics filtered out
plenty of paths that would otherwise get a higher rank. Hy-
pothesis H3 was also supported by T10. RECOS, in this
case, filtered out many paths that would have introduced
new objects (e.g., OntModelSpec) into the user context.

4.2. Comparison with other approaches

It is not trivial to compare code search tools due to the
obvious lack of standard benchmarks and tool availability
issues. We thus extend a case study proposed by Thum-
malapenta and Xie [13] and used to evaluate PARSEWeb
against Prospector and Strathcona. This case study is based
on the Logic example project of the Eclipse Graphical Edit-
ing Framework (GEF)4. The authors proposed ten program-
ming tasks that are shown in Table 2. We parsed the needed
jar files, generated the GEF Snippet Model, and instructed
RECOS to find solutions for each task.

Table 2. GEF Logic tasks & results
Task Source Destination Rank
T1 IPageSite IActionBars 1
T2 ActionRegistry IAction 1
T3 ActionRegistry ContextMenuProvider 1
T4 IPageSite ISelectionProvider 1
T5 IPageSite IToolBarManager 1
T6 String ImageDescriptor 1
T7 Composite Control 10
T8 Composite Canvas 7
T9 GraphicalViewerThumbnail Scrollable 0
T10 GraphicalViewer IFiugure 0

As observed in Table 2, RECOS found solutions for
all tasks except T9 and T10. T9 was in fact infeasible
since we could not verify the existence of the source ob-
ject in the library. T10 was not answered by any of the

4http://www.eclipse.org/gef/

http://www.eclipse.org/gef/


tools. In fact, PARSEWeb was unable to find a solution
for T3; Prospector and Strathcona could not answer T6-
T8. Consider T8 for example, the shortest solution would
be to invoke an existing Canvas constructor that accepts
Composite in its parameter list. However, a desired so-
lution based on the user’s context is, in fact, to instantiate
PageBook, a sub-type of Composite, and pass that ob-
ject to the constructor. Without our context heuristics, RE-
COS would have ranked this answer further down in the list.
PARSEWeb ranked this higher since it utilizes the usage fre-
quency heuristic. Prospector, on the other hand, could not
answer the query or perhaps the answer did not show up in
the list5 because its ranking mechanism is based mostly on
the length heuristic.

These results show a clear support for our three hy-
potheses. However, PARSEWeb outperforms RECOS and
Prospector 6 in the number of retrieved results. This is ex-
pected due to our reliance on API structures, but the ef-
fect of the final results was greatly reduced due to the na-
ture of the semantic representation and organization of API
knowledge. Furthermore, PARSEWeb ranked some of the
desired solutions higher. PARSEWeb performs sequence
post-processing and clustering that appears to improve the
total number of retrieved results and plays a role in rank-
ing similar sequences. However, PARSEWeb relies on in-
complete code fragments obtained from GCS and has no
access to API information. Therefore, it must use various
heuristics for type resolution. These heuristics, however,
may not work when the downloaded code contains a com-
plex sequence of method calls that was not used in initial-
ization expressions. Achieving perfection in code search is
near impossible, however, we believe that RECOS internal
mechanisms proved effective; and in the majority of cases,
show a clear support for our three hypotheses.

5. Discussion and future work

Ontologies have been widely recognized as effective
means for knowledge representation. On the other hand,
points-to analysis techniques provide effective mechanisms
for type inference. In this paper, we proposed an approach
that combines the strengths of both techniques to improve
search for relevant source-code snippets. We have also de-
veloped RECOS, a code search tool for object-instantiation
specific queries. RECOS is currently not tied to a particu-
lar IDE. However, we are currently integrating RECOS into
Eclipse as part of a comprehensive tool for program under-
standing and knowledge reuse. In addition to snippet rec-
ommendation and design recovery, this tool will be used
to recommend reusable components (e.g., finding source

5Prospector was configured to show only the first 12 results
6Strathcona did not perform well in this experiment since it does not

have a clear support for object-instantiation queries

and/or destination objects). We are also investigating the
application of semantic annotations and domain ontologies
to improving search precision and ranking.

References

[1] A. Alnusair and T. Zhao. Source Code Ontology (SCRO)
and examples of automatic ontology population. http:
//www.cs.uwm.edu/˜alnusair/ontologies.

[2] A. Alnusair and T. Zhao. Towards a model-driven approach
for reverse engineering design patterns. In Proc. 2nd Inter-
national Workshop on Transforming and Weaving Ontolo-
gies in Model Driven Engineering (TWOMDE’09), 2009.

[3] M. Emami, G. Rakesh, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proc. Conference on Programming Language
Design and Implementation (PLDI), pages 242–256, 1994.

[4] T. R. Gruber. A translation approach to portable ontology
specification. Knowledge Acquisition, 5(2):192–220, 1993.

[5] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In Proc. International
Conference on Software Engineering (ICSE), pages 117–
125, 2005.

[6] D. Hou. Investigating the effects of framework design
knowledge in example-based framework learning. In Proc.
IEEE International Conference on Software Maintenance,
pages 37–46, 2008.

[7] D. Mandelin, L. Xu, L. Bodik, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. In Proc. ACM
Conference on Programming Language Design and Imple-
mentation, pages 48–61, 2005.

[8] A. Michail. Data mining library reuse patterns using gener-
alized association rules. In Proc. International Conference
on Software Engineering (ICSE), pages 167–176, 2000.

[9] D. Poshyvanyk, A. Marcus, and Y. Dong. JIRiSS-an eclipse
plug-in for source code exploration. In Proc. IEEE Confer-
ence on Program Comprehension, pages 252–255, 2006.

[10] M. P. Robillard, R. J. Walker, and T. Zimmermann. Rec-
ommendation systems for software engineering. IEEE Soft-
ware, 27(4):80–86, 2010.

[11] R. Sindhgatta. Using an information retrieval system to re-
trieve source code samples. In Proc. International Confer-
ence on Software Engineering, pages 905–908, 2006.

[12] N. Tansalarak and K. Claypool. XSnippet: mining for sam-
ple code. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
413–430, 2006.

[13] S. Thummalapenta and T. Xie. PARSEWeb: a programmer
assistant for reusing open source code on the web. In Proc.
International Conference on Automated Software Engineer-
ing, pages 204–213, 2007.

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In Conference of the Centre for Advanced Studies on
Collaborative Research, pages 242–256, 1999.

[15] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending api usage patterns. In Proc.
European Conference on Object Oriented Programming
(ECOOP’09), pages 318–343, 2009.

http://www.cs.uwm.edu/~alnusair/ontologies
http://www.cs.uwm.edu/~alnusair/ontologies

