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Abstract
Organizations depend on heavy use of various cyber defense technologies, including

intrusion detection and prevention systems, to monitor and protect networks and

devices from malicious activities. However, large volumes of false alerts from such

technologies challenge cybersecurity analysts in isolating credible alerts from false

positives for further investigations. In this article, we propose a framework named

FAIXID that leverages Explainable Artificial Intelligence (XAI) and data cleaning

methods for improving the explainability and understandability of intrusion detec-

tion alerts, which in turn assist cyber analysts in making more informed decisions

fueled by the quick elimination of false positives. We identified five functional

modules in FAIXID: (1) the pre-modeling explainability module that improves the

quality of network traffic’s data through data cleaning; (2) the modeling module that

provides explanations of the AI models to help analysts make sense of the model

internals; (3) the post-modeling explainability module that provides additional

explanations to enhance the understandability of the results produced by the AI

models; (4) the attribution module that selects the appropriate explanations for the

analysts according to their needs; and (5) the evaluation module that evaluates the

explanations and collects feedback from analysts. FAIXID has been implemented

and evaluated using experiments with real-world datasets. Evaluation of results

demonstrates that the utilization of data cleaning and AI explainability techniques

provide quality explanations to analysts depending on their expertise and

backgrounds.

Keywords AI explainability � Intrusion detection � Data cleaning � AI-based
cybersecurity � Cyber threat intelligence

Extended author information available on the last page of the article

123

Journal of Network and Systems Management (2021) 29:40
https://doi.org/10.1007/s10922-021-09606-8(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9513-3022
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-021-09606-8&amp;domain=pdf
https://doi.org/10.1007/s10922-021-09606-8


1 Introduction

With the continuous increase of network throughput and cybersecurity threats,

intrusion detection not only challenges cyber defense technologies but also

challenges computing power and human investment. The network traffic generated

from an organizational network is overwhelming. Although Intrusion Detection

Systems (IDS) have been a popular solution, one of the prevailing problems of IDS

is the very high rate of false positives that overwhelm cybersecurity analysts with

false IDS alerts. This is a labor-intensive and expensive process [1, 2]. One of the

main directions of IDS research relies on adopting Artificial Intelligence (AI)

technologies to reduce the workload of analysts. However, AI technologies can be

limited by the training data, and existing models may not perform well in dynamic

cyberspace. Besides, the lack of explainability of AI results usually hinders human

analysts from trusting them. The fact that AI technologies and human analysts

cannot collaborate effectively has resulted in three urgent issues in intrusion

detection system management: (1) the rapid growth of network traffic data volume

to consider for analysis, (2) the lack of explanatory data analysis results, and (3)

labor-intensive and expensive analysis process caused by false alarms.

In addressing these challenges, it is important to realize that cybersecurity

analysts of different roles have various expectations on the results of AI

technologies associated with the management of intrusion detection systems.

Therefore, a holistic view of the human-in-the-loop analysis process is needed for

managing the AI technologies and results in IDSs.

To provide a holistic view, we propose a framework that incorporates data

cleaning and Explainable Artificial Intelligence (XAI) technologies into the data

analysis process of intrusion detection to facilitate the collaboration between human

analysts and technologies. Data cleaning has been widely used to improve the

quality of data. XAI technologies have been used in IDS to improve the

explainability and understandability of intrusion detection alerts [3, 4], which in

turn assist cyber analysts in making more informed decisions by quickly eliminating

false positive alerts.

One of the major challenges for leveraging AI and data analysis algorithms is to

create a data set that contains relevant and accurate information. The complex

nature of real-world data makes data quality problems more evident because errors

may spread and lead to useless or even harmful results. This explains why data

cleaning has received increasing attention in recent years [5–8]. The cleaning

process is critical because it bridges the gap between the data we want and the data

we have, and it directly affects the processes that come after it. In this article,

several typical data cleaning techniques have been employed to obtain relevant

high-quality data for intrusion detection systems, including quality assessment,

aggregation, sampling, and feature selection techniques.

Furthermore, we need XAI to improve fairness, accountability, and trust in

decisions. According to Lipton et al. [9], XAI has three different notions: (1) pre-

modeling explainability—using a cleaned and/or summarized set of features, (2) in-

modeling explainability—generating explanation and prediction together, and (3)
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post-modeling explainability—explaining the dynamics between inputs and outputs

in an already trained/tested AI model.

To this end, we developed a novel framework named FAIXID that has been

designed and implemented for the purpose of enhancing the explainability of AI-

powered intrusion detection alerts. FAIXID provides a system structure that

identifies the functional modules critical for providing cybersecurity analysts with

more accurate and explainable results in the setting of intrusion detection. These

functional modules include the Pre-Modeling Explainability Module, Modeling
Module, Post-Modeling Explainability Module, Attribution Module, and Explana-
tion Evaluation Module.

This work uniquely contributes to the proper linking of the established field of

intrusion detection/prediction and the re-emerging fields of data cleaning and AI

explainability by developing an integrated framework that assists analysts with

different backgrounds and levels of expertise to make better decisions regarding

threat identification and mitigation. More specifically, the primary contribution of

this work is twofold:

– FAIXID is an integrated framework that incorporates data cleaning and AI

explainability techniques in the data analysis process of intrusion detection.

FAIXID employs data cleaning methods to filter out the noise data in the dataset

through data quality assessment, data measurement, and filtration of low-quality

data. Following data cleaning and construction of a subset of a high-quality and

relevant dataset, FAIXID employs Explainable AI algorithms to ensure that the

resulting AI models are better interpretable and understandable to cybersecurity

analysts.

– FAIXID emphasizes the importance of understanding the different needs of

human analysts in the human-in-the-loop data analysis process. In addition to the

explainability and modeling modules, we defined the attribution module and

evaluation module in FAIXID as two important functional modules: the

Attribution Module selects the appropriate algorithms for the analysts according

to their needs, and the Evaluation Module evaluates the explanations provided to
analysts based on task performance, user experience, and explainability

functions.

This article is organized as follows. In Sect. 2, we provide background information

and an overview of previous research on cybersecurity analysts, intrusion detection

and prediction, and explainable artificial intelligence. In Sect. 3, we present detailed

information about the structure and components of our framework. Sect. 4 describes

the evaluation procedure, setup and the roles of FAIXID modules in the evaluation

process. In Sects. 5 and 6, we describe the evaluation experiments using human

subjects and proxy methods, respectively. Finally, the paper concludes in Sect. 7

with some future research directions.
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2 Background Knowledge and Literature Survey

There has been quite a significant body of research in intrusion detection, prediction,

and response techniques; many of these research efforts have been implemented into

useful tools. However, there are few research works that address the utilization of

Explainable Artificial Intelligence (XAI) and data cleaning techniques for improv-

ing the explainability of intrusion detection results. Hence, they are more

explainable and understandable by human analysts. In this section, we categorize

recent research efforts in these areas and discuss them separately.

2.1 Cybersecurity Analysts in SOC

SOCs (Security Operations Centers) are responsible for monitoring and analyzing

real-time activities within the organizational network. It employs various technol-

ogy solutions, such as IDS/IPS (Intrusion Detection/Prevention Systems), firewalls,

log systems, SIEM (Security Information and Event Management) systems, etc.

While working with technology solutions, cybersecurity analysts investigate the

alerts and logs in real-time to detect malicious cyber incidents. D’Amico and

Whiteley investigated the roles of Computer Network Defense Analysts. They

outlined the analysis stages, including triage analysis, escalation analysis, corre-

lation analysis, threat analysis, incident response, and forensic analysis [1]. The

hierarchical analysis process is also reflected in the Cocoa, a SOC ontology for

analysis, which is aligned to the NIST cybersecurity framework [10]. The lower-

level analysis (usually done by Tier-1 analysts) involves monitoring and investi-

gating the incoming alerts and reports generated by IDS/IPS and SIEM systems for

possible malicious activities [2]. The lower-level analysis reports are escalated to

upper-level analysis to further understand patterns of attack and make predictions

about future attacks. The analysts’ experience and domain knowledge play an

important role in these stages of analysis [11, 12].

The real-time alerts and logs are overwhelming for analysts to process because of

many false positives (i.e., false alerts and reports). Therefore, AI approaches have

been brought to the field to reduce analysts’ workload and increase their work

efficiency [13, 14]. Given the fact that analysts are coupled with AI-enabled

solutions, the decisions from AI solutions have to be explainable to gain analysts’

trust and help analysts in making a confident and accountable decision. Analysts of

different responsibilities have different requirements from AI explainability. For

example, Tier-1 analysts may care more about the logic of a model in filtering and

correlation analysis and whether the logic is reasonable for confident decision

making.

2.2 Cybersecurity Intrusion Detection and Prediction

Intrusion detection is mainly about detecting and mitigating cybersecurity threats.

We begin this section by reviewing recent intrusion detection approaches, focusing

on techniques that utilize Data Mining (DM) and Machine Learning (ML). Later in
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this section, we provide a review of recent approaches that are more focused on

intrusion prediction. While both intrusion detection and prediction mechanisms are

helpful, FAIXID differs from these efforts because it does not assume that the data

is high-quality. Instead, it employs data cleaning techniques to smooth out the noise

in the dataset that it operates on. Then it utilizes AI Explainability methods to make

the results of IDS alerts more explainable and understandable to human analysts.

ML and its sibling DM techniques focus on training and testing the data and

revealing its hidden properties. Recently, Peng et al. [15] proposed a clustering-

based intrusion detection technique based on an improved version of the K-means

algorithm in order to handle big datasets. The proposed method is combined with

the use of Principal Component Analysis (PCA) to reduce the dimensionality of the

processed dataset and improve clustering efficiency. Experimental evaluation of the

approach was demonstrated on the KDDCUP99 dataset, which shows that clustering

based on mini-batch K-means along with PCA can be efficient for intrusion

detection over big datasets. For voluminous data in Wireless Sensor Networks,

Otoum et al. [16] proposed an ML-based approach for intrusion detection that

leverages Reinforcement Learning (RL) methods. The approach shows that RL-

based intrusion detection outperforms other approaches in terms of detection

performance, accuracy, and precision.

Uwagbole et al. [17] proposed an ML approach for SQL Injection Attack

(SQLIA) detection and prevention in the context of big data. The authors utilized a

predictive analytics web application with vast quantities of learning data to train a

classifier. The goal is to detect SQLIA in web requests before they mature and reach

the back-end database. The primary objective that this approach achieved in

comparison with other related works is the scalability factor, where the approach

worked well and achieved good performance and scores with massive quantities of

data.

In Smart Cities, connected vehicles continuously communicate and exchange

information, which makes them prone to cyber-attacks. As such, researchers have

recently focused on intrusion detection of connected vehicles in smart city

environments. Most recently, Aloqaily et al. [18] proposed an automated cloud-

based framework for intrusion detection that maintains user’s requirements in terms

of quality of service and quality of experience. As such, the proposed hybrid method

(called D2H-IDS) is meant to distinguish between trusted service requests vs. false

requests during an intrusion attack. In this approach, decision tree ML is used for

data classification purposes, which helped the system to achieve high accuracy and

detection rates while reducing the number of false negatives and false positives.

Goeschel [19] proposes a model for reducing false positives in intrusion detection

systems based on DM methods by combining support vector machines (SVM),

decision trees, and Naı̈ve Bayes algorithms. The data was initially divided into

normal/abnormal using SVM. A model based on decision trees in this approach is

used to identify known attacks, while a Naı̈ve Bayes classifier is used to identify

unknown attacks. Using these three algorithm types, the false alarm rates were

significantly reduced. Hachmi et al. [20] presents an optimization method named

MOP-IDS that uses multiple Intrusion Detection Systems to identify false positives

and false negatives based on a three-step process. The first step is filtering the low-
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level alerts. In the second and third steps, clustering techniques are used to reduce

redundancy, and then binary optimization is used to detect false positives and false

negatives in the produced set of alerts.

Gil Perez et al. [21] presents the design of a collaborative Intrusion Detection

Network System (IDS) model, which uses a reputation model to assess IDS alerts

for the purpose of detecting false IDS alerts and distributed attacks in multiple

environments. The role of the reputation model is to ensure that the alerts are being

assessed for trustworthiness and credibility. In terms of security risk management

and mitigation, most recently, Khosravi-Farmad1 et al. [22] , presents an integrated

framework that models the necessary information required for network security risk

management. This framework is based on a probabilistic graphical model named

Bayesian Decision Network (BDN). Additionally, a cost-benefit concrete analysis is

performed to promote risk mitigation. This is accomplished by employing a

Variable Elimination (VE) inference algorithm to account for budget limitations.

In terms of mitigating efforts, Otoum et al. [23] proposed a technique for

mitigating false negatives using a two-tier intrusion detection approach in Wireless

Sensor Networks as being used in Smart Grid applications. The proposed system

utilizes two subsystems–first, an anomaly detection subsystem with Enhanced

Density-Based Spatial Clustering of Applications with Noise method. Second,

incident signature detection is being used with Random Forest method. The

utilization of these two subsystems shows that the number of false negatives is

reduced when the rate is higher of the anomaly detection subsystem, and it is lower

of the signature detection subsystem.

While intrusion detection is concerned with discovering and mitigating threats as

described previously, cybersecurity intrusion prediction is focused on taking

proactive measures to understand network vulnerabilities to proactively harden and

improve the system’s resilience against potential cybersecurity incidents. AI

techniques, including Machine Learning, Deep Learning, Data Mining (DM), and

Natural Language Processing (NLP), have been extensively utilized to predict

cybersecurity incidents allowing analysts to respond to such incidents before the

actual damage happens. As such, new trends have recently emerged, focusing on

analyzing datasets to obtain knowledge that can be used to train classifiers to

forecast cybersecurity incidents. Liu et al. [24] proposed a technique that is based on

analyzing the properties of an organization’s network data flow to forecast

cybersecurity incidents. To do so, they have utilized a large number of features that

are obtained from network mismanagement symptoms and malicious activity time

series such as spam and phishing. These features are then used to train an Random

Forest (RF) classifier against incident reports. The relative importance of features

has been demonstrated along with the classifier performance and accuracy in

forecasting cybersecurity incidents.

Soska and Christin [25] proposed an ML classifier that can predict whether a

website may become compromised and pose security risks in the near future before

it actually becomes malicious. The proposed classification system utilizes a large

corpus of websites for training purposes, and a set of static features were obtained

automatically from the Alexa Web Information Service and web page content. It is

clear that the performance of ML-based methods relies heavily on the selection of
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features that the classifier needs to base its decisions on. This is a significant

drawback, especially when domain knowledge is not appropriately utilized to

identify a highly appropriate set of features. Furthermore, relying only on website

content and traffic statistics to predict if the site will be malicious at some point is

quite risky and can be violated easily[25].

Security threats and incidents are usually saved in natural language. Therefore,

NLP-based tools [26–28] have been proposed in the literature to assist in detecting

and predicting cybersecurity incidents. Such tools can provide good prediction

performance when the utilization of domain knowledge is done in a meaningful

manner to process data. For example, Ritter et al. [26] proposed an approach that

focuses on discovering focused security events on Twitter by using a weakly

supervised seed-based extraction technique. Using a small number of seed

examples, automatic extractors for new categories of security events are defined

and trained in a weakly supervised manner. The system has been demonstrated in

three categories of security events, namely, DoS attacks, account hijacking, and data

breaches. Generally speaking, techniques that employ NLP to process textual data in

social media and elsewhere can be considered as being highly domain-specific, and

it will be quite hard to adapt such approaches to other domains with a slightly

different vocabulary.

Other ML/DM approaches focus on predicting malicious websites [25, 29].

Borgolte et al. [29] proposed a system named Delta System based on static analysis

that can be used to identify malicious activities and infection campaigns in a website

based on the observed modifications and differences between the previous and the

current version of the site. The point is to facilitate the identification and removal of

infections and mitigate additional future infections by determining if the new

version of the website is benign or malicious. The analysis in the proposed Delta

system begins by retrieving and normalizing both versions of the website. Based on

this normalization, the similarities between the two versions of the site are

computed using a fuzzy tree difference algorithm that performs the tree-to-tree

comparison. The process continues by clustering the assignment of the similarity

vector. Finally, the identifying signature of known infection campaigns is generated.

Wang et al. [30] proposed an explainable ML-based framework for IDS. The

approach uses Shapley Additive explanations as well as local and global

explanations in order to improve the explainability of intrusion detection systems.

This is something similar to our approach. However, there are many fundamental

differences. Specifically, in this approach, the role of human analysts is the user who

reviews the IDS results but not a component in the intrusion detection process. In

our work, we consider human analysts as an important player in the process. As we

will discuss later in this paper, human analysts of different responsibilities have

different needs for the explanations. Therefore, a holistic view of the human-in-the-

loop analysis process is needed for managing the AI technologies and results in

IDSs. To provide this holistic view, our framework incorporates data cleaning and

Explainable Artificial Intelligence (XAI) technologies into the data analysis process

of intrusion detection to facilitate the collaboration between human analysts and

technologies. One important contribution of our framework is that it identifies the

attribution module, the evaluation modules, and two important functional modules
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that take human analysts’ needs and feedback as the processing inputs. The

Attribution Module selects the appropriate algorithms for the analysts according to

their needs, and the Valuation Module evaluates the explanations provided to

analysts based on task performance, user experience, and explainability functions.

These two modules are one of the primary differences between our works and many

related existing works.

2.3 Explainable Artificial Intelligence

Explainable AI (XAI) is a re-emerging field of study, after the earlier work of

[31, 32], and [33], that focuses on understanding an AI model by interpreting and

then explaining its contents so it can be easier for human end-users to understand it

and reason about it. Previous work primarily focused on explaining the decision

process of knowledge-based systems and expert systems. Recent advancements in

AI and ML, their application to diverse areas, and concerns over unethical use and

undesired biases in the models are some of the top reasons behind the renewed

interests in XAI research. In addition, recent concerns and laws by different

governments are necessitating more research in XAI. In addition, in February 2020,

the U.S. Department of Defense (DoD)1 adopted ethical principles for Artificial

Intelligence [34] that encompasses five major areas: responsible (exercising an

appropriate level of judgment in AI capabilities), equitable (minimizing unintended

bias in AI capabilities), traceable (transparent and auditable AI capabilities), reliable

(explicit and well-defined uses of AI capabilities), and governable (ability to detect

and avoid unintended consequences, and ability to deactivate deployed systems).

Yang et al. [35] adopt the concept of Bayesian Teaching that uses a subset of

examples selected by the domain experts instead of using the entire dataset.

However, selecting the right subset of examples from the real-world is somehow

challenging. Lei et al. [36] propose an approach for sentiment analysis that uses a

subset of text as an explanation of prediction instead of the entire text. However,

their approach is only limited to text-based analysis. [37] propose a model agnostic

explanation technique that explains the prediction of a black box model using a

simple and interpretable model in the local context. They emphasize putting humans

in the loop for enhancing trust in the decision.

Kim et al. [38] propose an interpretability approach that helps quantify the

sensitivity of prediction to high dimensional concepts, such as the concept of

‘‘striped’’ can be utilized for identifying the image of Zebra from images not

containing Zebra. The concept is usually constructed from a user-defined set of

examples. Furthermore, for better explainability and validation of results from

neural network based black-box models, Horel et al. [39] develop a statistical test to

assess the statistical significance of the features/variables in a single layer feed-

forward neural network. In addition, the test statistics also enable one to rank the

variables based on their influence on the prediction. However, their approach is

limited to only a single layer feed-forward neural network and requires a very large

amount of samples to fit the data in the asymptotic distribution.

1 https://www.defense.gov
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Mariano et al. [40] applied an adversarial approach to finding minimum

modification of the input features of an intrusion detection system needed to reverse

the classification of the misclassified instance. Besides satisfactory explanations of

the reason for misclassification, their approach is model agnostic and can be

extended to further diagnosis. Furthermore, [41] work on understanding the

implications of adversarial samples on Recurrent Neural Network (RNNs) as an IDS

since RNNs are good for sequential data analysis and network traffic exhibits some

sequential patterns. They find that adversarial the adversarial training procedure can

significantly reduce the attack surface.

Furthermore, [42], propose an explainable Deep Neural Network framework for

anomaly detection in industry settings. Their approach explains questions like why

something is an anomaly and what is the confidence of the explanation. In the

industrial control system, an alarm from the intrusion/anomaly detection system has

a very limited role unless the alarm can be explained with more information. [43]

design a layer-wise relevance propagation method for DNN to map the abnormal-

ities between the calculation process and features. This process helps to compare the

normal samples with abnormal samples for better understanding with detailed

information. More recently, decentralized and distributed ‘‘Plug and Play’’ (PnP) AI

tools are becoming more attractive because of the vast number of Internet of Things

(IoT) devices, and an enormous amount of data. Ridhawi et al. [44] envision a novel

general AI solution that automatically selects appropriate dataset, model (e.g.,

supervised, unsupervised), and configurations (e.g., neural network configuration),

and recognizes the data set (i.e., understand data type, provides data reasoning).

Most of these available approaches find the deviation from the base/average

scenario. Lime [37] tries to generate an explanation from local behavior by

approximating the model with an interpretable model (e.g., decision trees, linear

model). However, Lime is limited by the use of only a linear model to approximate

the local behavior. Furthermore, [45] propose ‘‘SHAP’’ that combines functional-

ities from previous seven approaches: LIME [37], DeepLIFT [46], Tree Interpreter

[47], QII [48], Shapley sampling values [49], Shapley regression values [50], and

Layer-wise relevance propagation [51] to explain the prediction in a model agnostic

way. While SHAP comes with solid theoretical background from game theory,

usually it is computationally intensive [52]. ELI5 also uses the LIME algorithm

internally for explanations. However, ELI5 is mostly limited to tree-based and other

parametric or linear models. Similarly, Tree Interpreter is limited to only tree-based

approaches such as Random Forest and Decision Trees.

Different users of AI models may have various purposes of explainability in

models in terms of trustworthiness, causality, transferability, informativeness,

confidence, fairness, accessibility, interactivity, and privacy awareness[53]. There-

fore, addressing these issues needs more attention.
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3 Framework for Enhancing Explainability of Intrusion Detection

Since IDS alerts are read and interpreted by human cybersecurity analysts, there is a

dire need to reduce or eliminate the amounts of false positives that are usually

produced by IDS alert systems and consequently enhance the explainability of

intrusion detection results. To this end, we have developed a novel framework

named FAIXID that integrates AI explainability methodologies and data cleaning

techniques in the domain of IDS/IPS alerts analysis. The proposed framework is

general enough to accommodate different scenarios and applications by not

subscribing to a particular specification or technological solution. As illustrated in

Fig. 1, FAIXID includes five functional modules: Pre-modeling Explainability
Module, Modeling Explainability Module, Post-modeling Explainability Module
and an Attribution Module and Explanation Evaluation Module. These integrated

modules work together to provide cybersecurity analysts of different roles with

more accurate and more explainable data that help them with their daily decision-

making practices.

In the following sub-sections, we discuss the modules in the proposed framework

with their functional components.

Fig. 1 FAIXID: the framework for enhancing explainability of intrusion detection
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3.1 Pre-modeling Explainability Module

The purpose of this module is to improve data quality, understand and describe the

data used to develop the model. This module contains two primary functional

components: data cleaning and pre-modeling explainability algorithms.

3.1.1 Data Cleaning

The data cleaning component is designed to improve the quality of the incoming

network traffic data by processing the data in order to detect irrelevant pieces and

cleanse inaccurate data through a three-phase approach, which includes data
quality, measurement, and improvement phases. Considering the large volume of

network data and the high rate of false alerts of IDS, data cleaning is essential for

intrusion detection.

High-quality data can help cybersecurity analysts quickly and accurately

determine suspicious network activities to detect potential attacks. In addition, the

quality assessment allows analysts to have a comprehensive understanding of data

resources, which will help to use them systematically, and integrate them into the

detection process.

The data quality phase attempts to understand the nature of the data source and

relevant context information in order to identify high-quality data from the

incoming raw traffic. This is accomplished by utilizing relevant data quality

assessment strategies. Based on our previous works in the domain of data quality

assessment for data cleaning [54], we utilize four of the most relevant dimensions

for identifying high-quality data from a raw dataset: accuracy, completeness,

consistency, and timeliness. In the measurement phase of data cleaning, a scoring

system is used to measure the quality of data based on pre-defined quality metrics.

In general, multiple metrics can be associated with each quality dimension. In the

improvement phase of the data cleaning component, we utilize sampling methods in

order to filter out low-quality data and obtain a subset of high-quality data that can

be fed to the next phase for processing. In most situations, we only need a portion of

the most relevant high-quality data. Therefore, the goal of filtering is to convert

large raw data into a small subset of the most pertinent data that is most useful for a

particular application.

We summarize the processing phases of the data cleaning component as follows:

1. Phase 1 - Data Quality Definition: The input of this phase is a data source and

context information. In the experimentation section of this paper (Sect. 4), we

use the UGR network traffic data. Data Analysis aims to identify relevant data

quality dimensions in the given context. The output of this phase is a list of the

quality dimensions.

2. Phase 2 - Measurement: The input at this phase is the dimensions of data quality

obtained from the first phase. This phase performs quality measurement

according to the definition of quality metrics. The output is the data quality

value and quality-related issues.
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3. Phase 3 - Improvement: Uses the data quality value obtained in the second

phase as input, and compares it with the quality requirement value to identify

the critical areas, and then different methods are used in this stage to improve

the quality of data.

3.1.2 Pre-modeling Explainability Algorithms

The pre-modeling explainability component is a collection of explainability

algorithms that intend to achieve a common goal of gaining a better understanding

of the dataset used for the development of AI models. Examples of algorithms

utilized in this component include exploratory data analysis, feature engineering,

dataset summarization and visualization methods, and other relevant algorithms.

Exploratory Data Analysis (EDA) is used to explore the data, and extract a

summary of the main features and characteristics of a given dataset. Dataset

summarization aims to find a minimal subset of representative samples that can

represent the essence of the dataset. Interpretable feature engineering includes

domain-specific and model-based feature engineering. The goal of feature

engineering algorithms is to extract a useful set of features that help us understand

and interpret the data based on domain knowledge. Such feature extraction is a

crucial step as future steps in the framework and ML algorithms heavily rely on how

carefully these features are selected, and how well the domain knowledge is being

applied during the process of extracting representative features. The implementation

details of feature selection are described in Sect. 4. Collectively, the algorithms in

the pre-modeling explainability component help cybersecurity analysts in making

sense of the data features by producing higher quality data.

3.2 Modeling Explainability Module

This module contains AI models and the explanations that enable users of this

framework to make sense of the AI models and enable user-driven explanations for

decision-making purposes. The explainable in-modeling algorithms such as Boolean

Rule Column Generation(BRCG) [55] algorithm described in Sect. 4.3 are mainly

concerned with model interpretability that provides transparent models and AI

model internals (e.g., parameters, weights, feature interaction, etc.) to allow users to

understand the model. Infusing domain knowledge in the model for better

explainability has also been tried successfully by [3, 56] . Models can have

different levels of transparency, which have been carefully described in [53]. As

such, this module is carefully designed to enhanced modeling explainability by

empowering users of the system to understand the reasoning behind the results

generated by the models and thus making more sound decisions.

3.3 Post-modeling Explainability Module

The post-modeling explainability module provides a collection of various

algorithms that are designed to provide additional information about how an AI
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model produces a particular result. For example, sample-based explanations

methods examine the dataset and identify the most influential representative training

samples/examples to explain machine learning results. We used the Contrastive

Explanations Method (CEM) [57] to provide sample-based explanations, which is

described in Sect. 4.3. Feature-based explanation algorithms explain the results of

black-box models, and enhance model interpretability by ranking the features in the

dataset according to an assigned importance value. Besides, optimization algorithms

can be used to generate explanations about how deep learning models work

internally [58].

3.4 Attribution Module

Given the variety of explainability algorithms provided in the pre-modeling,

modeling, and post-modeling modules, the Attribution Module selects the appro-

priate algorithms for the analysts according to their needs for different levels of

explainability. In addition, it examines the attributes of the data from different

angles and selects the right explanatory functions to provide analysts with varying

levels of explainability that suit their needs. The selection of the explainability level

that satisfies a given user is accomplished based on answering questions such as the

ones shown in Fig. 1. In Sect. 5, we have conducted experiments that demonstrate

the novelty of this attribution module when selecting the right explanatory algorithm

for analysts based on their needs and roles.

3.5 Explanation Evaluation Module

The explanations provided to the analysts are evaluated by the Explanation
Evaluation Module. Human evaluation is the most widely used evaluation method.

Drawing on the taxonomy of Machine Learning interpretability proposed by Doshi-

Velez and Kim [59], we propose to evaluate the explanations from three

perspectives: impact on task performance, user experience, and explainability

function. The impact on task performance and user experience can be evaluated by

human subjects, and the explainability function can be evaluated based on

quantitative metrics, such as faithfulness[60] and monotonicity[61].

4 Framework Evaluation

The proposed explainability framework, FAIXID, has been implemented into an

integrated prototype. We used this prototype to test and evaluate the framework’s

modules on intrusion detection scenarios using network traffic analysis.

The primary objectives of the evaluation include:

– To evaluate whether the modules in our framework can fulfill the needs of

cybersecurity analysts of various roles

– To evaluate whether data cleaning increases the explainability of IDS results

– To examine what explanations serve analysts the best, and to investigate the

analysts’ needs through FAIXID’s evaluation module
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– To investigate whether a non-human subject-based explainability quantification

method (i.e., proxy-based method) can be applied to quantify the quality of

explanation.

In this section, we discuss the setup and processes that we utilized to evaluate the

framework considering the nature of the dataset, the data cleaning and filtering

process, feature selection process, and explainability algorithms, as described in

FAIXID modules. In the following section, we discuss the human-subject

experiments that we conducted using this setup. In Sect. 6, we discuss how we

evaluated the explainability of the framework using proxy methods.

4.1 Experiment Setup

We adopt a network traffic dataset, named UGR’16 [62], in our intrusion detection

evaluation tasks. This dataset is a collection of real network traffic for about four

months, from a tier-3 Internet Service Provider (ISP), containing background and

attack traffics. It is a well-labeled dataset with the necessary ground truth of attack.

We selected a portion of the dataset (i.e., 115 GB), which includes the network

flows captured in the time window of August 1, 2016, to August 7, 2016. The

selected dataset contains the most types of network flows within a week, as shown in

Table 1.

In this malware version of the dataset, infected bots send SPAM, connect to an

HTTP C&C server, and use HTTP to perform some ClickFraud2.
The features of the dataset includes the timestamp of the end of a network flow

(‘‘Timestamp’’), duration of network flow (‘‘FlowDuration’’), source IP address

(‘‘SrcIP’’), destination IP address (‘‘DstIP’’), source port (‘‘SrcPort’’), destination

port (‘‘DstPort’’), protocol (‘‘Protocol’’), forwarding status (‘‘ForwardingStatus’’),

Table 1 Different types of network flows in the selected UGR’16 dataset [62]

Type Description

background Background traffic

blacklist Traffic involving the IP addresses included in the public blacklists

botnet Botnet traffic including bots behaviors such as sending SPAM, connecting to C&C server,

and performing click fraud.

dos Denial of service traffic that includes SYN packets sent to the victims

scan11 One-to-one port scanning

scan44 Four-to-four port scanning

spam SMTP spam traffic

sshscan SSH scanning attack

udpscan UDP scanning attack

2 A type of fraud occurs online in pay-per-click advertising.
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type of service (‘‘TypeofService’’), packets exchanged (‘‘ExedPacketss’’), and the

corresponding bytes (‘‘Bytes’’).

We apply AI algorithms to detect the attack-related traffic in the data set, which

mimics the AI-based intrusion detection systems. According to the proposed

framework, we provide explanations in the pre-modeling, modeling, and post-

modeling phases to help analysts understand the analysis result better. We apply an

open-source software toolkit, AIX360 [63] to generate explanations in different

contexts. Furthermore, we evaluate the explanations in three use cases targeting

different analysts. The explanations are evaluated from the aspects of impact on task

performance, user experience, and explainability functions. The results are

presented in Sect. 5.

4.2 Data Cleaning

For data cleaning, the most commonly used data quality dimensions include

completeness, accuracy, timeliness, etc. Through the pre-analysis of the UGR

dataset, including completeness and repeatability assessment, the analysis results

show that UGR data has a high degree of completeness and low repeatability.

Therefore, considering the results and the context of the data set, when defining data

quality, we pay more attention to two dimensions—timeliness, and relevancy. —

Timeliness is an important aspect of data, especially for the intrusion detection

scenario. If certain types of network traffics are from a certain period, these network

activities have a higher probability of being a potential attack. Furthermore, —

Relevancy refers to the degree of relevance between network activities and known

data, such as blacklist data. If a network activity is associated with blacklist data,

then this traffic has a higher probability of being a potential attack and therefore has

a higher data quality.

4.2.1 Filtering Low-Quality Data

In most situations, we only need a portion of the most relevant high-quality data.

Therefore, the goal of filtering is to convert a large raw dataset into a small subset of

the most relevant data that is most useful for a particular application. In the filtering

stage, we use sampling methods to obtain high-quality data.

We aggregate the data set by combining the hourly data. First, we group the data

by source IP, source port, destination IP, destination port, and protocol. Second, we

calculate the number of occurrences, forwarding status, type of service, and the

average of exchanged packets and bytes. The aggregated dataset was reduced to

57.12 GB from 115.11 GB (original dataset).

Furthermore, due to the large scale of the dataset, we use a two-step sampling

method to extract high-quality sample data. First, we apply the random sampling

method to weekly data, which provides an unbiased representation of the dataset

since each member of the dataset has an equal probability of being chosen. At the

same time, we get another dataset with 418,593 records based on related datasets

(i.e., blacklist) using a two-step sampling method. A blacklist dataset contains
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abnormal network flow data. Finally, we merge two datasets to obtain the final

dataset with 1,083,606 records applied in AIX360.

4.2.2 Feature Selection

We remove the ‘‘ForwardingStatus’’ feature because it has a constant value in the

dataset. Besides, we remove the feature ‘‘Bytes’’ following a correlation analysis

(Pearson Correlation) among features as correlated features overfit the model, and

one of the correlated features is enough for the analysis. The correlation matrix in

Fig. 2 demonstrates that the feature ‘‘Bytes’’ is highly correlated with the feature

‘‘PacketExed’’, considering the threshold = 0.8 used for identifying strong

correlations.

After data cleaning, we trained a Boolean Rule Column Generation (BRCG)

model to predict normal/abnormal network traffic, and the accuracy of predicting

abnormal network traffic based on the cleaned data is 0.87.

4.3 Explainability Algorithms

The AIX360 toolkit supports a list of explainability algorithms, including

ProtoDash, Disentangled Inferred Prior VAE, Contrastive Explanations Method,

Contrastive Explanations Method with Monotonic Attribute Functions, LIME,

SHAP, Teaching AI to Explain its Decisions, Boolean Decision Rules via Column

Generation, Generalized Linear Rule Models, and ProfWeight. In this work, we use

the following four algorithms to generate explanations that support the three cases

described in Sect. 5.2. We use the Boolean Rule Column Generation(BRCG) [55]

algorithm which provides a direct interpretable supervised learning method for

Fig. 2 Correlation matrix of the features
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binary classification. This algorithm uses the column generation technique to learn a

Boolean rule in disjunctive normal form or conjunctive normal form. The Logistic

Rule Regression(LogRR) [64] is a supervised learning method that can be directly

interpreted, which can perform logistic regression on rule-based functions.

ProtoDash [65] algorithm provides example-based explanations for summarizing

datasets and explaining predictions from an AI model. It uses a fast gradient-based

algorithm to find prototypes, examples that best summarizes and compactly

represents the data distributions, along with their importance weights. We use the

Contrastive Explanations Method (CEM) [57] to compute contrastive explanations

which highlights both pertinent positive (PP) and pertinent negatives (NP). This

algorithm finds minimally sufficient (pertinent positive) and the necessarily absent

(pertinent negatives) to maintain the original classification.

5 Evaluation of Explainability using Human Subjects

In this section, we provide details about the most recent significant experiments that

we have designed and conducted to evaluate the proposed framework. In particular,

we have conducted a human-subject experiment that intends to evaluate the

effectiveness of the explainability provided to cybersecurity analysts in terms of

task performance, user experience, and the explainability function. These aspects

have been identified in the Explanation Evaluation Module of the framework.

The human-subject experiment was carried out based on the setup that was

discussed in the previous section. The experiment was conducted in controlled

settings with the consideration of task complexity. The goal is to evaluate how well

potential cybersecurity analysts perform real-world analysis tasks using the

explainability enhancements of IDS alerts provided by our framework.

The primary hypotheses that we set out to test in this experiment include:

H 1 The proposed framework provides cybersecurity analysts with quality

explanations that assist them in making better decisions when trying to understand

and identify potential incidents.

H 2 FAIXID provides explanations that are helpful, sufficient, and easy to

understand, for analysts, depending on their roles and skills.

5.1 Participants

We screened the participants based on their domain knowledge in machine learning,

computer networking, and intrusion detection. Seven human subjects participated in

our study. Table 2 shows participant’s levels of knowledge of ML techniques,

fundamental computer networking, and intrusion detection.

5.2 Procedure and Case Descriptions

The impacts of explanations on task performance can be evaluated by comparing

the analysts’ task performance with and without explanations. Due to the small
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number of subjects involved in this study, we adopted the forward simulation

approach[59] in which subjects were presented with the explanations and model

input (i.e., a piece of network flow data), and they were asked to simulate the output

(i.e., whether it is attack traffic or simply a false positive). This procedure allows us

to understand if the explanations help the subjects to understand the model output.

Besides, we presented three cases to the participants and asked them to take a

different role of analysts in each case to evaluate how the framework can meet

different needs of analysts: the first case targets data triage analysts who want to

improve their understanding of data models; the second case targets the analysts

who are interested in evaluating the prediction results; and the third case targets the

analysts with the responsibility of incident response who are interested in the

importance of data features on the prediction results.

User experiences were measured by the rating of the perceived helpfulness,

explanation sufficiency, and the ease of understanding: helpfulness refers to how

helpful a participant finds an explanation is in terms of his/her task; explanation

sufficiency asks how well the provided explanation meets the participant’s need;

and the ease of understanding asks how easy it is to understand the explanation. On

a 5-point Likert Scale questionnaire, subjects express their agreement, neutrality,

and disagreement through 5-4, 3, and 2-1 points, respectively (Fig. 3).

Case 1: Model Explainability:
As explained in Sect. 2.1, the analysts who take care of data triage would prefer

to understand the model as a whole. They need to compare the models based on

their domain knowledge and experience and present their findings to upper-level

Table 2 The knowledge level of

the human subjects

Fig. 3 A rating question about the perceived helpfulness, sufficiency, and ease of understanding
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analysts. A good understanding of the model enables analysts to recognize

overfitting problems and bias in the model.

In this case, we chose the interpretable models for classification, including the

BRCG and the LogRR model. Because of the simple forms, the analysts can quickly

understand the logic of the model and learn how the classification results were

produced. We also have observed a trade-off between model simplicity and

prediction accuracy. In our case study, participants were provided with the

visualization of how the prediction results are linearly related to the numerical

features and rules.

Figure 4 shows some examples of visualized explanations provided to analysts to

understand the dependence of the LogRR model on individual features. These

explanations visualize the generalized additive model components, including first-

degree rules and linear functions of the features.

Case 2: Prototypical Analysis:
Analyzing prototypes helps analysts understand the AI model predictions by

reviewing the representatives that are similar to a network flow being predicated as

abnormal/normal. The analysts of various levels of analysis (e.g., triage, escalation,

and correlation analysis) may be interested in reviewing and understanding the

prototypical network flows that have been classified as a normal or abnormal

activity. We used the ProtoDash algorithm [65] implemented in AIX360 to obtain

and present prototypes to our participants.

The participants were asked to play the role of analysts whose responsibilities

include reviewing the reports from data triage analysts and correlating incidences to

understand the potential threats. In this case, the selected prototypical explanations

were provided to the participants to help them understand the prediction results. One

explanation includes one selected network flow which was identified as normal

traffic and the top five prototypes with similar features to the selected one. The other

explanation includes the selected abnormal network flow and its top five prototypes

with similar features. The top prototypes were selected using the Protodash

algorithm [65]. Table 3 shows one example of the explanations.

Case 3: Feature-Based Analysis:

Fig. 4 Example explanations that visualize how the AI model (i.e., the logistic rule regression model)
depends on the individual features. The plots include the generalized additive model components,
excluding the higher-degree rules. The Y-axes refer to the contribution to the contribution to the log-odds
of the prediction of abnormal network flow. The values of the features, including Timestamp, DstIP, and
SrcIP have been converted to the ordinal numbers and been binarized, as required by the logistic rule
regression model
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Analysts with the responsibility of incident response and threat analysis may not

care about how the IDS/IPS models work precisely. Instead, they would prefer a

more abstract black-box view of the model to focus on learning how features impact

the decisions.

In this case, the participants were asked to play the role of analysts of incident

response and pay special interest in why a network flow was identified as abnormal,

and if so, what changes made in feature values would let them be identified as

normal. Therefore, a constructive explanation can provide the information needed

for this type of analyst.

In our experiment, we used the constructive explanation algorithm in AIX360,

which is developed by [57]. Two explanations are demonstrated in Fig. 5. The left

explanation shows the feature importance in terms of pertinent negatives (PNs), and

the right one shows the feature importance of pertinent positives (PPs). To calculate

PNs, the algorithm first identifies the network flows that have been predicated as

abnormal and then changes the values of a minimal set of features that would yield a

different prediction result (normal). On the other hand, PPs are calculated by

Table 3 One sample explanation in Case 2, showing the top prototypes with the similar features of a

selected abnormal network flow. The values in the cell are the importance weight in the range of (0, 1),

which indicates how similar the feature of the prototype is to the selected one

Feature Prototype1 Prototype2 Prototype3 Prototype4 Prototype5

Timestamp 1.00 0.56 0.15 0.50 0.44

FlowDuration 1.00 1.00 1.00 0.08 1.00

SrcIP 1.00 1.00 0.72 0.32 0.07

DstIP 0.96 0.08 0.08 0.19 0.08

SrcPort 1.00 0.20 0.39 0.39 0.39

DstPort 1.00 1.00 0.08 0.89 0.39

Protocol 1.00 1.00 1.00 0.08 1.00

TypeofService 1.00 1.00 1.00 1.00 1.00

PacketExed 1.00 1.00 1.00 0.08 1.00

Fig. 5 Example explanations of feature importance in Case 3
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identifying the minimal set of features that would change the prediction results from

normal to abnormal.

The PNs and PPs explain how the prediction results could have been different

through minimal changes to features and help analysts understand the importance of

features. For instance, given the left plot in Fig. 5, an analyst can tell the Protocol

and DstPort are the key features for the IDS model and changes to the values of

these features may yield different prediction results. The analyst will check whether

it is consistent with their expectation based on their expertise. Otherwise, it may

indicate a disagreement between the judgment of analysts and the IDS model, and

the model needs to be updated.

5.3 Discussion of the Rating Responses

Recall that the user experience was measured by the rating of the perceived

helpfulness, explanation sufficiency, and ease of understanding in Fig. 3, the

boxplots of the rating scores in the three cases are shown in Fig. 6. These

experiments allowed us to gain several inspiring findings. First of all, most

participants agreed that the explanations provided in the cases were helpful. We

noticed that there were three participants in Case 2 rated low (‘‘Disagree’’) for

‘‘Helpfulness’ and the ‘‘Ease of Understanding’’. It makes sense that the

explanations can be found less useful when participants were unable to completely

understand them.
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Fig. 6 User study: rating responses of the three cases - the dots in red, green, and blue are the rating
response; the black dots are the outliers of the boxplots
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Although the number of participants and the number of cases used in this study

are not very large to provide conclusive data with statistical evidence about

FAIXID’s effectiveness, the data shown in Fig. 6 is promising, and it suggests that

FAIXID can meet different needs of analysts when they try to identify potential

incidents via explanations that are overall helpful, sufficient, and easy to understand.

As a part of our future work, we plan to conduct a comparison experiment to collect

more evidence to show the FAIXID’s internal mechanisms can help analysts in

becoming more productive.

Another observation is that most explanations were found useful by the

participants, but the rating of ‘‘Sufficiency’’ is relatively low, especially in Case 3.

These results indicate that participants expected more explanations when taking the

analysts’ role in Case 3. This observation is consistent with our assumption that

analysts of various roles (described in Sect. 5) have different needs for explanations.

To satisfy the different needs, the attribution module in FAIXID plays a critical role,

and it works as a recommendation system to suggest which explanations may serve

the analysts the best in a given intrusion detection task. As such, the value of using

the attribution module provides partial support for hypothesis H2.

In this experiment, the attribution module was implemented manually such that

we decided which explanations can meet the needs of analysts in each case prior to

the case study and select XAI algorithms to generate these explanations. Therefore,

these explanations provided to subjects were generated according to their roles in

each case. We believe that a refined attribution module could improve the rating of

‘‘Sufficiency’’. The ratings of ‘‘Sufficiency’’ suggest that the attribution module

needs to consider the feedback of the analysts as an important input to make more

relevant recommendations to analysts. Developing an attributions system that can

autonomously collect analysts’ feedback as well as the requirements of an intrusion

detection task is currently being investigated as a possible future enhancement for

FAIXID. We expect that such an attribution system would make more concrete

recommendations of the relevant and useful explanations to analysts of different

roles.

5.4 Threats to Validity

Our human-subject experiments exercised various aspects of our framework. Some

of these aspects come with their limitations and threats to validity. Therefore, there

exist several external threats to the validity of our exploratory experiments. Firstly,

the validity of the experiments is limited by the choice of the dataset used in the

study. While the selected subset of the UGR dataset that we used in our study

consists of real traffic data, and is carefully chosen to include background traffic and

attack traffic, the network flow is well-labeled, and the time span of this traffic is

four months. Secondly, although we have informally experimented with some other

datasets and obtained comparable results, the experiments we reported in this article

are from one dataset. Performing more comprehensive empirical evaluations with

other datasets can strengthen our conclusions and reduce some of these threats.

Additionally, while the size of the dataset used in our experiment is considered
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acceptable, we cannot establish the scalability and performance bench-marking of

the used algorithms without testing it on bigger datasets.

Finally, although the three use cases with human-subjects gave us good insights

into the usefulness of our framework in terms of how helpful, sufficient, and easy to

understand the explanations were, the use cases are quite limited by the number of

subjects. As such, a larger-scale user study with more subjects in which some of

them are professional cyber analysts may provide us a better insight into the quality

of the explanations provided. Ideally, we would like to have the same subjects

experiment with tasks that use the proposed framework and other tasks without it.

However, it is quite hard to design tasks that have the exact level of complexity that

allows us to draw useful conclusions about the effectiveness of the proposed

framework. In such a user experience evaluation, it would undoubtedly mitigate

many of the threats described previously.

Since user experiments involve human-subjects, such experiments usually

introduce internal threats to validity because the subjects have varying degrees of

background and proficiency in cybersecurity analysis. More user experiments that

involve a considerably larger number of participants would certainly mitigate these

threats.

6 Evaluation of Explainability using Proxy Methods

In this section, we provide detailed information about the quantitative explainability

experiment designed and conducted to evaluate the proposed framework. We

conducted this experiment based on the proxy methods to quantify the effectiveness

of data cleaning in terms of explainability. This aspect has been identified in the

Explanation Evaluation Module of the framework. The hypothesis we set out to test

in this experiment is outlined below:

H 3 The utilization of data cleaning techniques improves the quality of the

incoming data traffic in manners that enhances the explainability of intrusion

detection.

Quantification of explainability is still an open challenge and far from the

expectation. In our prior work [66], we propose a proxy task-based explainability

quantification method for XAI in credit default prediction. In this work, we apply

the same approach [66], but for a different case, for the quantification of

explainability in XAI for the intrusion detection. A proxy task-based explainability

quantification method considers different properties of output representation, such

as the depth of a decision tree, and size of rule list as a metric for evaluation of

explainability. Humans have a limit on the capacity of processing information—

average human can process 7� 2 pieces of information (i.e., cognitive chunks) to

understand something [67]. According to [66], in the most generalized form, the

quality of an explanation depends upon the number of cognitive chunks or

information pieces that the recipient of explanation has to relate to in order to

understand an explanation (i.e., the less, the better) of a prediction. A summary of

their approach is as follows.
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Lets assume, E ¼ explainability; Nc ¼ number of cognitive chunks; I ¼
interaction; Ni ¼ number of input cognitive chunks; and No ¼ number cognitive

chunks or information pieces involved in the explanation representation, i.e., output

cognitive chunks.

E ¼ 1

Nc
ð1Þ

However, the interaction among cognitive chunks, from the correlated features,

complicates the explainability. Therefore, the Formula 1 is penalized for having an

interaction among cognitive chunks, resulting in Formula 2.

E ¼ 1

Nc
þ ð1� IÞ ð2Þ

where, the interaction I ranges in between 0 and 1. We use the Programming

language R’s iml package, which uses the partial dependence of individual features
as the basis, to measure the interaction (i.e., interaction strength) (I) among features.

Usually, the less the interaction, the better the explainability, so the Formula took

the complement of I. Figure 7a represents the feature interaction before data

cleaning, and Fig. 7b represents the feature interaction after data cleaning. We use

the iml package from the programming language R to generate the interaction

strength among features. From Fig. 7a and 7b, it is evident that our data cleaning

reduces the interaction among features which ultimately will result in better

explainability of output.

Furthermore, both input cognitive chunks and output cognitive chunks are

important to understand the causal relationship between input and output. It is also

vital for good explanations. The ideal case to avoid the correlation problem is to

have one input and one output cognitive chunk, but this is rare and unusual in real-

world cases. After the segregation of input and output cognitive chunks, Formula 2

can be re-written as Formula 3:

Fig. 7 Interaction strength before and after data cleaning
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E ¼ 1

Ni
þ 1

No
þ ð1� IÞ ð3Þ

where Ni refers to the number of input cognitive chunks, and No refers to the

number of cognitive chunks involved in the explanation representation. Usually,

explanations become more complicated with the increase of cognitive chunks. For

both input and output, the ratios of the best case (i.e., one cognitive chunk) and

observed case (for a particular application), 1/Ni and 1/No, are added towards the

total explainability measure.

To commensurate the importance of different predicates, a weight term (i.e., w)

is added for each of three predicates. Therefore, Formula 3 becomes Formula 4:

E ¼ w1

Ni
þ w2

No
þ w3ð1� IÞ ð4Þ

Formula 4 can then be used to quantify the explainability of the explanation method

(i.e., global explainability) for any classifier. We can use Formula 4 to also quantify

the local explainability too—explainability of an instance-level prediction. In that

case, only the first predicate of Formula 4 (including the weight term) remains the

same (i.e., the same number of input chunks). However, the remaining two predi-

cates, predicate 2 and predicate 3, will vary from instance to instance as an inter-

action strength (I) depends on the involved cognitive chunks in the representation of

explanation for a particular instance.

Applying Formula 4, on metadata (Table 4) of two different feature settings

(before and after data cleaning), we see that clean data provides the best

explainability score of 0.2056, which is a multitude of improvements compared to

the 0.066 that we get using the raw data (Table 4). In fact, performance for any

post-hoc interpretability/explainability method will still be limited to 0.0085 if it

does not reduce the number of cognitive chunks to represent the output. The results

of the table show that the data cleaning mechanism is indeed increasing the

explainability score from 0.066 to 0.2056, which will ultimately help to obtain

better explainability output results. Therefore, it provides strong support for our

hypothesis H3.

Despite some signs of progress in explainability quantification methods, there are

still some challenges that need more attention. Some of the challenges include: (1)

constructing an optimal approach for calculating instance-level feature contribution

that takes correlations among features into considerations due to the matter that the

correlation among feature affects as well as complicates explanations, and (2)

reaching into an agreement of what an explanation is and to whom, and a formalism

Table 4 Explainability score

from raw data and clean data
Raw Data Clean Data

Input chunks (Ni) 10 8

Output chunks (No) 8 8

Int. Strength (I) 1.00 0.6327

Explainability (E) 0.0666 0.2056
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for the explanation [68] highlighted the diverse and dynamic explainability

requirements of users in AI/ML ecosystems with a case scenario to advance the

research of accessible explainable AI.

7 Conclusion

Cyber attacks have been growing in volume and complexity near exponentially.

This leaves cybersecurity analysts overwhelmed with the process of navigating

through the countless number of daily IDS threat alerts, most of which are not

considered very credible. The proposed FAIXID framework uniquely combines data

cleaning techniques and XAI in a single framework that intends to assist analysts in

their daily threat monitoring activities.

We evaluated the framework using different case studies, including human-

analyst experiments and a proxy evaluation experiment. The result of human-

subject experiments, demonstrates the importance of the proposed framework’s

functional modules, that is, FAIXID provides subjects with quality explanations that

are overall easy to understand, efficient, and helpful in improving decision making

on potential cyber threats. We observed that analysts of different roles have

different expectations for the explanations provided by the attribution module.

Besides, it is critical to collect analysts’ feedback through the evaluation module to

improve the explanation attribution. We also conducted an experimental evaluation

of explainability based on proxy methods to evaluate data cleaning effectiveness for

improving explainability and interpretability. The results show that the employed

data cleaning mechanisms are indeed improving the interpretability score.

This work opens a path toward further enhancements and new research

directions. In particular, developing an enhanced and automated attribution module

capable of selecting appropriate algorithms according to the needs of analysts is

foreseen as a promising new direction. Furthermore, comparing the effectiveness of

different data cleaning techniques, as well as further improving the range, visual

representation, and scalability of the explainability algorithms, would be an

interesting future work direction. In terms of framework evaluation, it would be

insightful to conduct future experiments using multiple datasets that involve a larger

pool of analysts. Additionally, we plan to conduct performance analysis, using

Principal Component Analysis (PCA), to figure out the relative valuable information

sacrifices introduced by the data cleaning and XAI techniques. Finally, another

interesting future work direction is to conduct a comprehensive comparison of the

performance of the algorithms provided by the AIX360 toolkit with other

algorithms in a different explainability toolkit.
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